Jarrell Waggoner$^1$ / @malloc47 / waggonej@email.sc.edu,
Youjie Zhou$^1$,
Jeff Simmons$^2$,
Ayman Salem$^3$,
Marc De Graef$^4$,
Song Wang$^1$
$^1$USC, $^2$AFOSR, $^3$MRi, $^4$CMU
Rapid analysis of materials will help
Incorporate human interaction into the segmentation task to
with minimal interaction
In our previous work, the automatic
segmentation was done by using an energy of the form
\begin{equation} E( S^V ) = \sum_{p\in V}\Theta_p(S^V_i) +
\sum_{\{p,q\}\in\mathcal{P}^V_n} \Phi_{pq}(S_i^V , S_j^V)
\end{equation}
where
We require only a single annotation (click) identifying a particular segment $S^V_k$ to be removed
Update the $\Theta$ term to allow $S^V_k$ to be
reassigned to its neighbors:
\begin{equation}
\begin{aligned}
\forall p \in S^V_k ,& \quad \Theta_p(\tilde{S}^V_i) = \left\{
\begin{array}{lcr}
0, & S^V_i \in \{\mathcal{A}^V\}_k \\
\infty, & \textrm{ otherwise} \\
\end{array}
\right.\\
\end{aligned}
\end{equation}
Require three inputs:
\begin{equation} \Theta_p(\tilde{S}^V_{n+1}) = \left\{ \begin{array}{lcr} 0, & \| p - c \| \leq d \\ \infty, & \textrm{ otherwise} \\ \end{array} \right. \end{equation}
\begin{equation} \Theta_p(\tilde{S}^V_i) = \left\{ \begin{array}{lcr} \infty, & \| p - c \| \leq s \textrm{ and } i \neq n+1 \\ \Theta_p(S^{V}_i), & \textrm{ otherwise.} \\ \end{array} \right. \end{equation}
$d = 2\times s$